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Introduction

Examples many-body fermionic systems

Many-body fermionic systems with nontrivial phases:

Many-electron system: metal, insulators, magnetism, ....

Nucleons: nuclear, nucleon superfluid inside neutron stars, ....

Quarks in the high-density QCD

Quantum 
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Fermi 

liquid

Non-Fermi liquid
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Gap
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liquid

Quark 

Matter?
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Introduction

Effective field approach to strongly-correlated fermions

Microscopic model (Hubbard model, lattice spin model, lattice gauge theory)
↓

Effective field theory
↓

Experiments & Phenomenology

Requirements for EFTs:

1 Be simpler than original microscopic models

2 Emerge from renormalizable theories, or lattice models.

Phenomenon Effective Field Theory Microscopic Model

Superconductivity Ginzburg-Landau theory BCS theory
Antiferromagnetism Nonlinear sigma model Heisenberg model
χ-symmetry breaking NJL/QM model QCD
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Introduction

Effective field approach to strongly-correlated fermions

Simple forms of effective action:

L = ψG−1(∂τ ,∇)ψ + g(ψψ)2

or
L = ψG−1(∂τ ,∇)ψ + φG−1φ (∂τ ,∇)φ+ gφψφψψ

At low energies, interactions become strong due to dynamical effects.
⇒ Nonperturbative methods of QFT

Important!

Nonperturbative techniques of field theories must be developed in order to
describe IR physics using EFT.
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Introduction

Cold atomic physics

Ultracold fermions provides examples of strongly-correlated fermions.
High controllability can tune effective couplings with real experiments!
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(Typically, T ∼ 100nK, and n ∼ 1011−14 cm−3)

Yuya Tanizaki (University of Tokyo, RIKEN) FRG for ultracold fermions Mar. 6, 2014 @ RBRC 6 / 32



Introduction

BCS-BEC crossover

EFT: Two-component fermions with an attractive contact interaction.

S =

∫
d4x

[
ψ(x)

(
∂τ −

∇2

2m
− µ

)
ψ(x) + gψ1(x)ψ2(x)ψ2(x)ψ1(x)

]

BECBCS
0

Cooper pairs DimersUnitary gas

(Eagles 1969, Legget 1980,
Nozieres & Schmitt-Rink 1985) .

Question
Is it possible to treat EFT systematically to describe the BCS-BEC crossover?
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Introduction

Purpose of this talk

Develop the functional renormalization group (FRG) method for many-body
fermions.

Study the BCS-BEC crossover using the developed formalism of FRG.

I BCS side: Connection of FRG & BCS theory + GMB correction is made clear.
Systematic improvement is considered to go beyond it!

I BEC side: Describe the Bose gas of dimers /wo auxiliary field methods.
This requires a new non-perturbative formalism of FRG.

I Describe the whole region of the BCS-BEC crossover in this formalism.
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Aspects of FRG

Functional renormalization group
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Aspects of FRG General framework

General framework of FRG

Generating functional of connected Green functions:

exp(W [J ]) =

∫
DΦ exp (−S[Φ] + J · Φ) .

infinite dimensional integration!

Possible remedy: Construct nonperturbative relations of Green functions!
(⇒ Functional techniques)

Dyson-Schwinger equations

2PI formalism

Functional renormalization group (FRG)
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Aspects of FRG General framework

Flow equation of FRG

δSk[Φ]: Some function of Φ with a parameter k. (IR regulator)

space of  

effective 

action

Interacting theory

Noninteracting 
theory

k-dependent Schwinger functional

exp(Wk[J ]) =

∫
DΦ exp [− (S[Φ] + δSk[Φ]) + J · Φ]

Flow equation

−∂kWk[J ] = 〈∂kδSk[Φ]〉J
= exp (−Wk[J ]) ∂k(δSk) [δ/δJ ] exp(Wk[J ])

Consequence

We get a (functional) differential equation instead of a (functional) integration!
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Aspects of FRG Examples of FRG

Conventional approach: Wetterich equation
At high energies, perturbation theory often works well.
⇒ Original fields control physical degrees of freedom.

IR regulator for bare propagators (∼ mass term): δSk[Φ] = 1
2ΦαR

αβ
k Φβ .

Flow equation of 1PI effective action Γk[Φ] (Wetterich 1993)

∂kΓk[Φ] =
1

2
STr

∂kRk
δ2Γk[Φ]/δΦδΦ +Rk

=

∂kRk
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Aspects of FRG Examples of FRG

FRG beyond the naive one: vertex IR regulator

In the infrared region, collective bosonic excitations emerge quite in common.
(e.g.) Another low-energy excitation emerges in the ΦΦ channel

Vertex IR regulator: δSk = 1
4!g

αβγδ
k ΦαΦβΦγΦδ.

Flow equation with the vertex IR regulator (YT, PTEP2014, 023A04)

∂kΓk[Φ] = + + + + +
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Aspects of FRG Optimization

Optimization

Choice of IR regulators δSk is arbitrary.

Optimization:
space of  

effective 

actions

Interacting theory

Noninteracting 
theories

Choose the “best” IR regulator, which validates
systematic truncation of an approximation scheme.

Optimization criterion (Litim 2000, Pawlowski 2007):

IR regulators δSk make the system gapped
by a typical energy k2/2m of the parameter k.

High-energy excitations (& k2/2m) should
decouple from the flow of FRG at the scale k.

Choose δSk stabilizing calculations and making it easier.
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Application of fermionic FRG to the BCS-BEC crossover
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Application of fermionic FRG to the BCS-BEC crossover

BCS-BEC crossover

Model:

S =

∫
d4x

[
ψ(x)

(
∂τ −

∇2

2m
− µ

)
ψ(x) + gψ1(x)ψ2(x)ψ2(x)ψ1(x)

]

BECBCS
0

Cooper pairs DimersUnitary gas
0

0.1

0.2

0

BEC of free 

Bose gas

BCS 

Unitarity Limit

(Nozieres and Schmitt-Rink 1985,...) 

?

(n = k3F /3π
2, εF = k2F /2m)

Purpose of this talk

Nonperturbative FRG can describe the BCS-BEC crossover /wo auxiliary fields!
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Application of fermionic FRG to the BCS-BEC crossover

General strategy

We will calculate Tc/εF and µ/εF .
⇒ Critical temperature and the number density must be calculated.

We expand the 1PI effective action in the symmetric phase:

Γk[ψ,ψ] = βFk(β, µ) +

∫
p

ψp[G
−1(p)− Σk(p)]ψp

+

∫
p,q,q′

Γ
(4)
k (p)ψ↑, p2+qψ↓,

p
2−q

ψ↓, p2−q′ψ↑,
p
2+q

′ .

Critical temperature and the number density are determined by

1

Γ
(4)
0 (p = 0)

= 0, n =

∫
p

−2

G−1(p)− Σ0(p)
.
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Application of fermionic FRG to the BCS-BEC crossover BCS side

BCS side

Case 1 Negative scattering length (kFas)
−1 � −1.

⇒ Fermi surface exists, and low-energy excitations are fermionic quasi-particles.

Shanker’s RG for Fermi liquid (Shanker 1994)
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Application of fermionic FRG to the BCS-BEC crossover BCS side

Functional implementation of Shanker’s RG

RG must keep low-energy fermionic excitations
under control.
⇒ δSk =

∫
p
ψpR

(f)
k (p)ψp with

R
(f)
k (p) = sgn(ξ(p))

(
k2

2m
− |ξ(p)|

)
θ

(
k2

2m
− |ξ(p)|

)

Flow equation of the self-energy Σk and the four-point 1PI vertex Γ
(4)
k :

∂k = ∂k = +
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Application of fermionic FRG to the BCS-BEC crossover BCS side

Flow of fermionic FRG: effective four-fermion interaction

Particle-particle loop ⇒ RPA & BCS theory

Particle-hole loop gives screening of the effective coupling at k ∼ kF
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(YT, G. Fejős, T. Hatsuda,
arXiv:1310.5800)

TBCS
c = εF

8eγE−2

π e−π/2kF |as| ⇒ TBCS
c /2.2. (Gorkov, Melik-Barkhudarov, 1961)
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Application of fermionic FRG to the BCS-BEC crossover BCS side

Flow of fermionic FRG: self-energy

Local approximation on self-energy: Σk(p) ' σk.
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High energy: σk ' (effective coupling)×(number density) ∼ 1/k

Low energy: ∂kσk ∼ 0 due to the particle-hole symmetry.
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Application of fermionic FRG to the BCS-BEC crossover BCS side

Transition temperature and chemical potential in the BCS side

(YT, G. Fejős, T. Hatsuda, arXiv:1310.5800)
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Consequence

Critical temperature Tc/εF is significantly reduced by a factor 2.2 in
(kFas)

−1 . −1, and the self-energy effect on it is small in this region.

µ(Tc)/εF is largely changed from 1 even when (kFas)
−1 . −1.
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Application of fermionic FRG to the BCS-BEC crossover BEC side

BEC side

Case 2 Positive scattering length : (kFas)
−1 � 1

⇒ Low-energy excitations are one-particle excitations of composite dimers.

atom

atom

dimer

Several approaches for describing BEC of composite bosons. (Pros/Cons)

Auxiliary field method
(Easy treatment within MFA/ Fierz ambiguity in their introduction)

Fermionic FRG (⇐ We develop this method!)
(Unbiased and unambiguous/ Nonperturbative treatment is necessary)
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Application of fermionic FRG to the BCS-BEC crossover BEC side

Vertex IR regulator & Flow equation

Optimization can be satisfied with the vertex IR regulator:

δSk =

∫
p

g2R
(b)
k (p)

1− gR(b)
k (p)

∫
q,q′

ψ↑, p2+qψ↓,
p
2−q

ψ↓, p2−q′ψ↑,
p
2+q

′

Flow equation up to fourth order (YT, PTEP2014 023A04, YT, arXiv:1402.0283):

∂k = ∂k = +

Effective boson propagator in the four-point function:

1

Γ
(4)
k (p)

= −m
2as

8π

(
ip0 +

p2

4m

)
−R(b)

k (p)
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Application of fermionic FRG to the BCS-BEC crossover BEC side

Flow of fermionic FRG: self-energy

Flow equation of the self-energy:

∂kΣk(p) =

∫
l

∂kΓ
(4)
k (p+ l)

il0 + l2/2m+ 1/2ma2s − Σk(l)
.

If |Σk(p)| � 1/2ma2s,

Σk(p) '
∫
l

Γ
(4)
k (p+ l)

il0 + l2/2m+ 1/2ma2s

'
∫

d3q

(2π)3
(8π/m2as)nB(q2/4m+ m2as

8π R
(b)
k (q))

ip0 + q2

4m + m2as
8π R

(b)
k (q)− (q+p)2

2m − 1
2ma2s

.

Estimate of |Σk(p)|:

|Σk(p)| . 1

2ma2s
× (
√

2mTas)
3 × nB(k2/4m).

⇒ Our approximation is valid up to (k2/2m)/T ∼ (kFas)
3 � 1.
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Application of fermionic FRG to the BCS-BEC crossover BEC side

Critical temperature in the BEC side

Number density:

n =

∫
p

−2

ip0 + p2/2m+ 1/2ma2s − Σ0(p)

' (2mTc)
3/2

π2

√
π

2
ζ(3/2).

Critical temperature and chemical potential:

Tc/εF = 0.218, µ/εF = −1/(kFas)
2.

⇒ Transition temperature of BEC.

Consequence

FRG with vertex regulator provides a nonperturbative description of many-body
composite particles.
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Application of fermionic FRG to the BCS-BEC crossover BCS-BEC crossover

fermionic FRG for the BCS-BEC crossover

We discuss the whole region of the BCS-BEC crossover with fermionic FRG.
⇒ Combine two different formalisms appropriate for BCS and BEC sides.

Minimal set of the flow equation for Σk and Γ
(4)
k :(YT, arXiv:1402.0283)

∂k = +

∂k = +
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Application of fermionic FRG to the BCS-BEC crossover BCS-BEC crossover

Flow of fermionic FRG with multiple regulators

Flow of four-point vertex:
Important property: fermions decouple from RG flow at the low energy region.

In BCS side, fermions decouples due to Matsubara freq. (k2/2m . πT ).

In BEC side, fermions decouples due to binding E. (k2/2m . 1/2ma2s).

Approximation on the flow of the four-point vertex at low energy:

∂k '

Flow of self-energy:
At a low-energy region, the above approx. gives

∂k = +

' ∂k
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Application of fermionic FRG to the BCS-BEC crossover BCS-BEC crossover

Qualitative behaviors of the BCS-BEC crossover from f-FRG

Approximations on the flow equation have physical interpretations.

Four-point vertex: Particle-particle RPA. The Thouless criterion
1/Γ(4)(p = 0) = 0 gives

1

as
= − 2

π

∫ ∞
0

√
2mεdε

[
tanh β

2 (ε− µ)

2(ε− µ)
− 1

2ε

]

⇒ BCS gap equation at T = Tc.

Number density: n = −2
∫

1/(G−1 − Σ).

n = −2

∫ (T )

p

G(p)− ∂

∂µ

∫ (T )

p

ln

[
1 +

4πas
m

(
Π(p)− mΛ

2π2

)]
.

⇒ Pairing fluctuations are taken into account. (Nozieres, Schmitt-Rink, 1985)

Consequence

We established the fermionic FRG which describes the BCS-BEC crossover.
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Summary & Outlook
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Summary & Outlook

Summary

EFT is a powerful approach to strongly-correlated fermions.
⇒ More powerful analytical method is still required for intuitive, unbiased
and systematic understandings.

Fermionic FRG is a promising formalism.
⇒ Separation of energy scales can be realized by optimization.
⇒ Very flexible form for various approximation schemes.

Fermionic FRG is applied to the BCS-BEC crossover.
⇒ BCS side: GMB correction + the shift of Fermi energy from µ.
⇒ BEC side: BEC without explicit bosonic fields.
⇒ whole region: Crossover physics is successfully described at the
quantitative level with a minimal setup on f-FRG.
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Summary & Outlook

Outlook

Perform numerical computations for the whole region of the BCS-BEC
crossover.
⇒ This explicitly confirms that our formalism can be systematically
improvable to describe the crossover physics.

Application of fermionic FRG to other low-density strongly-correlated
fermions.
e.g., Neutron superfluid, dipolar fermions in ultracold atoms, ...
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